ACS Science working team , 14 October 2013, Moscow, Russia

NIR and MIR science overview

Click to edit Master subtitle style Anna Fedorova, Oleg Korablev, Franck Montmessin, Alexander Trokhimovsky, Svetlana Guslyakova and ACS team

EXPERIMENT OPERATION PLAN

NIR: Near-IR Echelle/AOTF spectrometer

• Spectral range:	0.7 -	- 1.6 μm
[•] Spectral resolving p	oower:	~20 000
• Operation modes:	Nad	ir, Solar Occultation
· FOV:	30 x 0.3	mrad
· Mass/Power/Data	rate:	3.5 kg /15W /0.5 Gbit/day

Why this spectral range:

Intersection with SPICAM IR on Mars-Express and SPICAV Vis-IR on Venus-Express

SPICAM IR Mars-Express (LATMOS-IKI-BIRA)

SPICAV Vis-IR Venus-Express (LATMOS-IKI-BIRA)

SPICAM IR – AOTF spectrometer:

Spectral range: 1-1.7 μm Resolving power: 2000 Spectral resolution: 3.5 cm-1 0.5-1.2 nm FOV nadir: 1° solar occultation: ~0.07°

Different observation modes

Nadir viewing (day side)

- H2O abundance at 1.38 μm
- H2O and CO2 ices
- O2 dayglow ozone tracer

Solar occultation

- CO2, aerosols, H2O

Limb

- Airglow in IR (O21 Δ g 1.27 μ m)
- aerosols

Occultations:

Aerosol extinctions

NIR spectrometer

Nadir viewing (night side)

- $\Omega 21 \Lambda \sigma 1 27 \mu m airglow$

NIR spectrometer (solar occultation)

- Up to 10 orders for 0.5 sec
- Vertical resolution ~0.5 km
- 72 sec for occultation 0-100 km in the atmosphere
- AOTF 70 cm-1

- CO2 density and temperature 0 -110 km
- H2O 0-60(80) km
- **O2** 0-40 km
- Aerosols 0 80 km

NIR spectrometer (solar occultation)

- Up to 10 orders for 0.5 sec
- Vertical resolution ~0.5 km
- 72 sec for occultation 0-100 km in the atmosphere
- AOTF 70 cm-1

- CO2 density and temperature 0 -110 km
- H2O 0-60(80) km
- **O2** 0-40 km
- Aerosols 0 80 km

NIR spectrometer (dayside nadir)

- H2O abundance at 1.38 μm order 56 in 100 times more accurate than SPICAM supported by aerosol and temperature profiles from TIRVIM
- < 1 hour for nadir dayside</p>
- 1 order takes ~ 1-2 sec: 3-4 orders

NIR spectrometer (dayside nadir)

- O2 dayglow at 1.27 μ m order 61
- < 1 hour for nadir dayside</p>
- 1 order takes ~ 1-2 sec: 3-4 orders

← O2 / 1∆ _ g		-
	·	 -

NIR spectrometer (dayside nadir)

- CO2 u H2O ices mapping???
- Spatial resolution ~0.15x3km (1sec of integration) do we need this?
- Very questionable with 3-4 orders for full range

Examples of CO2 and H2O ice observations in the range of 1.1 – 1.65 μm by SPICAM IR

Northern latitudes Ls 262

South Pole Ls 250

O2(a1 Δ g) nightglow at 1.27 µm by SPICAM IR

$0 + 0 + C\Theta \rightarrow O2(a1\Delta g)$

+CO2
 Detected by OMEGA/Mars-Express (Bertaux et al., 2012) and CRISM/MRO (Clancy et al., 2012)

 Only POLAR LIMB observations. This emission is an effective indicator of downward flow of air from the altitudes where the CO2 photodissociation occurs (above 70 km).

NIR spectrometer (nadir nigthglow)

TGO can not provide the limb observations

Only nadir observations:

Observed polar O2 emission:

100-500 kR

At low latitudes:

The current models give the intensity **from 13 to 100 kR**.

Krasnopolsky et al. (2013):

10 ± 32 kR

NIR ACS:

- < 1 hour for nadir nightside</p>
- Order 61: 1257-1272 nm
- 1 order takes > 5 sec

$O + O + CO2 = O2(a1\Delta g) + CO2$

PGOPHER, a Program for Simulating Rotational Structure, C. M. Western, University of Bristol, http://pgopher.chm.bris.ac.uk

NIR (OH nigthglow)

- Expected detection limit ~ 3 kR
- CO2 and H2O absorption?

NIR (NO nigthglow)

NO nightglow at 1.224 μm

N+O = NO+hv

VIRTIS/Venus-Express – Garcia-Minoz et al., 2009 night side limb on Venus.

- NO infrared nightglow ≈20 kR for middle northern latitudes at 30°N-50°N.
- All values are inside 7.9–63 kR on limb!

NIR ACS:

- < 1 hour for nadir nightside</p>
- Order 63: 1217.4-1231.6 nm
- 1 order takes > 5-10 sec (averaging?)
- SNR~10 (for 1.2 kR)
- CO2 and H2O absorption?

MIR: Mid-IR Echelle/cross-dispersion

- Spectral range: $2.4 4.2 \,\mu\text{m}$
- · Instantaneous coverage: 230-300 nm ranges per measurement
- Spectral resolving power: >50 000
- FOV: 0.1 x 2.9 mrad
- · Aperture ratio 1:3
- Mass/ Power / Data: 12 kg / 20 W / 1.2 Gbit per day

2 images/s

- Size 460 x 200 x 440 mm
- Operation modes: Solar Occultation
- Operation rate

MIR spectrometer

Solar occultation

- High spectral resolution ~ 50000
- SNR ~500 (current estimation)
- Spatial resolution in SO ~1 km?
- 0.5-1 sec for measurements 1-2 position of secondary grating angle
- > 72 sec for occultation 0-100 km in the atmosphere
- CO2 measurements for density and temperature from 10 to at least 140 km
- Known species CH4, H2O, CO at 10-80 km
- Isotopic ratios HDO/H2O, 13CO2/CO2, CO18O/CO2 etc.
- Search of minor gaseous species C2H2, C2H4, C2H6 и, SO2, HO2, H2O2, H2CO, HCl, OCS etc.

MIR: Mid-IR Echelle/cross-dispersion

Secondary grating angle	Diffraction orders	Number of diff. orders	Wavelength range	Optimized (central) order	Wavelength range in central order	Resolving power in central order
48.2°	248-219	30	2.40-2.73 μm	232	110 nm	74000
50°	221-201	20	2.69-2.97 μm	208	137 nm	66000
51.8°	203-185	19	2.93-3.23 μm	193	159 nm	62000
53.6°	187-173	15	3.18-3.45 μm	178	187 nm	57000
55.5°	174-160	14	3.42-3.74 μm	166	215 nm	53000
57.2°	161-149	13	3.69-4.01 μm	155	246 nm	49000
59°	151-142	10	3.94-4.21 μm	146	277 nm	47000

Transmittance with absorption lines of different molecules *at 22 km* during occultation

MIR / occultations

CH4 measurements

- Ground-based observations
 Variable values from 0 to 30 ppb
 Krasnopolsky et al. (2004, 2007, 2011), Mumma et al., 2009, Villanueva et al. (2013)
- PFS on MEX: 10 ppb
 Formisano et al. (2004); Geminale et al. (2011)
- TLS on Curiosity: 0.18 ±0.67 ppbv corresponding to an upper limit of only 1.3 ppbv Webster et al. (2013)

Future instruments:

- NOMAD on TGO
- MIR-ACS on TGO

the orders between 3.18-3.45 μm (secondary grating angle=53.6°) The detection limit is better than **0.3 ppb** for target altitude of 20 km (without averaging)

MIR / occultations

H2O/HDO ratio

 Ground-based observations
 5.5±2 relative to the Earth's ocean water Krasnopolsky et al. (1997)

Future instruments:

- NOMAD on TGO
- MIR-ACS on TGO the orders between 3.18-3.45 μm or H2O from NIR 1.38 μm band

Figure 2. A small portion of the 2650-2800 cm⁻¹ spectrum showing three Martian CO₂ (628) lines, three Martian CO₂ (627) lines (absent in HITRAN-92), two telluric HDO lines with Martian satellites, and one CH₄ telluric line with a possible Martian satellite.

HDO/H2O Venus' mesosphere SOIR/Venus-Express, 2.2-4.3 μm, ~20000

MIR and NIR Scientific Objectives and Expected Performance:

Species	Scientific Objective	Current Knowledge	Wavelengths,	Detection limit Solar Occultation	Detection limit		
Abundant species							
CON	Profiles, pressure,	0.965	1.43, 1.58, 1.60, 2.7,	5-140 km	Temperature field		
02	temperature field		3.8		-		
	Profile isotopes	13C/12C=0.967	1.47, 1.45, 2.6 , 2.9 ,				
CO2 isotopes		180/160=1.018	3.0, 4.0 etc				
	D (*1 1 1	Ratios wrt Earth		10.001	<u> </u>		
H2O	Profile. abundance	1-500 ppm (variable with	1.13, 1.38, 2.56	10-80 km	0.5 ppm		
CO	Drofile churdenes	season)	1 57 0 4	1	100 mm		
CO	Pronerties extinction	300-1000 ppm	1.57, 2.4	4 ppm	100 ppm Manning of dust and iaa		
Aerosol	profiles	limb profiles particle sizes	0.03-4	Distinguish H2O/dust	cloud opacity		
02	Profile		0.76	Profiling up to 50-60 km	0.02-0.05%		
02	TIOINC	0.1570	0.70	with abundance 0 13%	0.02-0.0570		
O2(a1Ag)	Davglow (ozone)+	0-30MR (dayglow)	1.27		1 kR in nadir		
- (*** 8/	Nightglow	0-0.3MR (nightglow)					
		Tra	ce species				
CH4	Detection, profiles	<8 ppb (3-50)	3.3	0.08 ppb			
	Cl Detection alt I	Acctor <3 pattle at ul	3	0.1 nph			
C2H2	CIRREDUCITI	vlaster selevitie styli		0.4 pp0			
C2H4	Detection	<4 ppb	3.2	3 ppb			
C2H6	Detection	<0.2 ppb	3.3	0.2 ppb			
C2H0							
H2S	Detection	<20 ppb	2.6	20 ppb			
OCS	Detection	<10	2.44, 3.4	1 ppb			
HDO	Detection	0.1-1 ppm	3.7	0.8 ppb			
		-2 1		0.1.1			
H2CO	Detection	<3 ppb	3.6	0.1 ppb			
HO2 Rep	orted mattiffianabund	lances based on MIR	t: R~50 000, SNR~	500 (SO); ⁴ ppb			
	Detection	NIK: $K \sim 2000$; SNR ~ 2	000 (SO); SNR~10	00(N) 0.4 ppb			

Aerosol studies in solar occultation by SPICAM UV and IR Vertical profiles of UV and IR extinctions

Simultaneous observations of IR and UV channels in solar occultation (SO) mode

Channel	Spectral range	Spectral resolution	Wavelengths for extinctions, nm
UV	118-320 nm	>100	3 wavelengths: 200, 250, 300
Near-IR	1-1.7 μm	~2000	10 wavelengths : 996.4, 1093.7, 1158.2, 1197.0, 1241.4, 1272.9, 1304.4, 1321.9, 1514.6, 1552.2

The southern hemisphere (Ls 61-97)

Blue lines are the UV extinctions, black lines are IR extinctions with errorbars

Particle size inversion for single and bimodal distribution

Mie theory is used to retrieve the particle size distribution

For 1 mode

For 2 modes:

$$\sigma(\lambda) = N_1 \int Q_{ext}(r,\lambda) \pi r^2 n(R_1,\upsilon_1,r) dr \qquad \sigma(\lambda)$$

 $\sigma(\lambda) = N_1 \int Q_{ext}(r,\lambda) \pi r^2 n(R_1,\upsilon_1,r) dr + N_2 \int Q_{ext}(r,\lambda) \pi r^2 n(R_2,\upsilon_2,r) dr$

Evidence for a bimodal size distribution of aerosol particles on Mars by SPICAM/MEX

>60°N

<60°N

	ryyan ryyan ryyan Kyom ⁰ Kyom ⁰ Kyom ⁰ Kyom ⁰ Kyon Kyo	n ryan sym ryan Sycar ^a Sycar ^a Sycar ^a Elka Elk	n ryan syn ryan Sont Sont Sont Ein Ein	r ₁₀ µm r ₂₀ µm r ₃₀ µm K ₁₀ cm ³ K ₂₀ cm ³ K ₂₀ cm ³ H ₂ km H ₂ km	$r_0\mu{\rm m}$ $r_S\mu{\rm m}$ $r_0,\mu{\rm m}$ $N_0{\rm cm}^3$ $N_S{\rm cm}^3$ $N_0{\rm cm}^3$ ${\rm H}_0{\rm km}$ ${\rm H}_0{\rm km}$	$r_{1}, \mu \mathbf{n} r_{2}, \mu \mathbf{n} r_{3}, \mu \mathbf{n} \overline{n}_{0}, \mathbf{cm}^{3} \overline{n}_{0}, \mathbf{cm}^{3} \overline{n}_{0}, \mathbf{cm}^{3} \mathbf{H}_{1}, \mathbf{km} \mathbf{H}_{2}, \mathbf{km}$	r _{is} ym r _{is} ym r _{is} ym N _{is} on ¹ N _{is} on ³ N _{is} on ³ R _i lan H _i lan	sym sym sym sym Sym ² Sym ² Sym ² Bylm Bylm
	Action benisphee -SM 175 112 0009 1142 118401 20019 10 1038 1456460 4107 4107 41076	Outform beningsbee BON 1.75 1.02 D239 D432 E184.01 200-10 ⁶ D002 BANK A.07 A.0	Gatten benighter 600 1.75 1.02 0.42 0.8411 201-10* 30.32 Leakup 410 410 410 410 410	Northern Hennisphere SEMN 0.75 1.12 0.039 0.4-2 0.04-0.1 200-10 ⁴ 30 0.036 LesEASE 4107 4173 41005	Konfeen hemisphere +BM 0.75 112 0.008 0.42 0.04.01 200-10 ⁴ 00 30.35 1.054.41 1.01 -11 0.01 00	Northern hemisphere >BOM 0.75 1.12 0.038 0.42 0.04-0.1 200-10 ⁴ 00 00-35 (ESEAR) +1.07 +0.172 +0.008	Koften tenispher HMM 175 110 1116 142 00441 20010' 00 3035 Leskam with with with	Koffent Henlighter 40% 075 112 028 044 00441 20019 10 0035 1445046 410 410 4106
	601 177 125 0348 18-15 18103 210-510 40 51 (#1640) 418 4512 4302	40/ 177 125 1348 08-15 1313 219-519-40 50 (#####) 435 4212 4302	40/ 177 125 1348 08-15 1313 210-510 40 30 (#####) 435 41'0 4002	601 0.77 1.25 0.048 1.815 0.01403 2.10 ⁵ .510 ¹ 40 50 La=8640) ±1.05 ±0.12 ±0.012	404 077 125 E048 0815 02143 210¹510¹40 50 Larkets) ±0.05 ±0.12 ±0.02	40N 0.77 1.25 0.048 0.8-15 0.01-0.3 2.10 ¹ -510 ¹ -40 50 La=08-83 ±0.05 ±0.12 ±0.012	4500 177 128 1344 13515 00143 2101-510 40 80 Lefteral 1615 16112 16102	88 0 7 125 004 0615 0010 210 ¹ 510 ¹ 40 91 Letikoj 405 402 2002
Northern hemisphere								
>60N	0.75	1.12	0.039	0.4-2	0.04-0.1	200-104	30	30-35
(Ls=65-85)	±0.02	±0.32	±0.006					
<60N	0.77	1.25	0.048	0.8-1.5	0.01-0.3	2 100- 5 103	40	50
(Ls=86-93)	±0.05	±0.12	±0.012					

Maximal altitude (large mode) <30-40 km; (small mode) <30-50 km Small mode: reff =40-50 nm, N~200-104 cm-3

r1 is large mode dust radius; r2 is large mode H2O cloud radius; r3 is small mode radius;

Aerosol studies in solar occultations by MIR Photometric channels of ACS/MIR (TBC)

- Include the UV wavelengths to be sensitive to the small particles and measure the bimodal distributions
- The wavelengths should be outside the CO2 and ozone absorption in Hartley band
- The visible and near-IR wavelengths for better aerosol characterization

#q	λ [nm]	Δλ [nm]	Detector
1	200		
2	310	10	
3	430		Si 2.4x2.4 mm Hamamatsu S1336-5BQ
4	580		
5	750		x 7
6	900		
7		N	

Figure 29. Absorption cross sections of CO_2 and ozone, with Rayleigh extinction of CO_2 in the UV spectral range of SPICAM. The CO_2 cross sections are shown for two temperatures. At 200 nm, it is larger for 295 than 195 K. Aerosols/dust would add to the absorption.

Aerosol studies in solar occultations by MIR and NIR

- The aerosol characterization in the wide spectral range:
 - NIR: 0.763, 0.857, 0.99, 1.26, 1.38, 1.43, 1.55 μm
 - MIR: 3.2-3.7 μm
 - MIR photom. Channels: 0.2, 0.31, 0.43, 0.58, 0.75, 0.9 μm
- Possibility to separate the H2O clouds and mineral dust particles
- Sounding of bimodal distribution. Difficulties: the different vertical resolution?
- Altitude range from the surface to 80 km depending of season

1 mode log-normal distribution: H2O ice veff=0.2 μm Dust veff=0.4 μ m. The color marks a reff

The refractive index of **Martian dust**: Ockert-Bell et al. (1997), Wolff et al. (2009, 2010)

Refraction index of **H2O ice**: Warren (2008).

CO2 ice clouds will be also measured